Main Page   Class Hierarchy   Alphabetical List   Compound List   Compound Members  

prapi::texture::Canny< T, U > Class Template Reference

#include <EdgeDetector.h>

Inheritance diagram for prapi::texture::Canny< T, U >:

prapi::texture::DifferentialEdgeDetector< T, U > prapi::texture::EdgeDetector< T, U > prapi::ImageTransform< U, T > List of all members.

Detailed Description

template<class T, class U = bool>
class prapi::texture::Canny< T, U >

This Class makes the Canny edge detection.

It uses the gaussian mean and derivative mask to make the result. First the convolution is made for the matrix with gaussian mask then the suppress non maxima is made if the supressRadius is not zero and then usally the Hysteresis threshold is used when using Canny operator therefore you should use Hysteresis threshold for the matrix which you get from the getTransformedImage.


Public Methods

 Canny (double sigma=2.0, int suppressRadius=0, BorderAction borderAction=BORDER_REFLECT)
 This constructor makes the Canny masks.

 ~Canny ()
 The destructor of Canny.

double getSigma ()
 Get the standard deviation.

void setSigma (double sigma)
 Set the standard deviation.


Constructor & Destructor Documentation

template<class T, class U>
prapi::texture::Canny< T, U >::Canny double    sigma = 2.0,
int    suppressRadius = 0,
BorderAction    borderAction = BORDER_REFLECT
 

This constructor makes the Canny masks.

Parameters:
sigma  The standard deviation at the gausian masks.
supressRadius  The radius used in suppresNonMaxima. Note that when radius is zero suppression isn't made.
borderAction  How to handel the borders when needeed.


Member Function Documentation

template<class T, class U>
void prapi::texture::Canny< T, U >::setSigma double    sigma
 

Set the standard deviation.

When the sigma is set the gaussian masks are calculated again.


The documentation for this class was generated from the following file:
Documentation generated on 11.09.2003 with Doxygen.
The documentation is copyrighted material.
Copyright © Topi Mäenpää 2003. All rights reserved.