Event-based programs

- read() is blocking ➞ server only works with single socket ↔ audio, network input
- need I/O multiplexing ➞ event-based programming
- also need to handle time-outs, connection requests
- all events (mouse clicks, windows, etc.) handled by event loop

```c
int select(int nfds, fd_set *readfds, fd_set *writefds,
            fd_set *exceptfds, struct timeval *timeout)
```
- block until >= 1 file descriptors have something to be read, written, or an exception, or timeout
- set bit mask for descriptors to watch using FD_SET
- returns with bits for ready descriptors set ➞ check with FD_ISSET
- cannot specify amount of data ready

Audio timing

Need to write block of audio to speaker every t ms ($t = 20 \ldots 100$ ms) ➞

1. timer ➞
 - OS overhead
 - may not be accurate
 - error accumulation (time between timers)
 - clock may differ from audio sampling clock
2. use audio input: for every block read, write one audio block ➞ stay in sync
3. but: doesn’t work for half-duplex audio cards
Analog video

- black & white (RS170) + color burst subcarrier
- 15,750 Hz horizontal scanning

<table>
<thead>
<tr>
<th>system</th>
<th>where</th>
<th>lines (disp.)</th>
<th>size</th>
<th>f/s</th>
<th>bw</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTSC</td>
<td>US, Japan</td>
<td>525 (483)</td>
<td>4:3</td>
<td>30</td>
<td>6 MHz</td>
</tr>
<tr>
<td>PAL</td>
<td>Europe</td>
<td>625 (576)</td>
<td>4:3</td>
<td>25</td>
<td>8 MHz</td>
</tr>
</tbody>
</table>

Reduce flicker ➡ interlace scanning: 2 fields/frame

Digital video

- motion video: 5 to 30 f/s
- camera ➡ Red, Green, Blue ➡ chrominance, luminance
- YUV: Y = luminance, UV: color difference (red, blue − Y)

<table>
<thead>
<tr>
<th>format</th>
<th>lines</th>
<th>pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIF</td>
<td>480</td>
<td>704</td>
</tr>
<tr>
<td>CIF</td>
<td>288</td>
<td>352</td>
</tr>
<tr>
<td>QCIF</td>
<td>144</td>
<td>176</td>
</tr>
</tbody>
</table>

Digital video

Eye more sensitive to luminance ➡ subsample chrominance: 2:1:1, 4:1:1, 4:2:2

Video coding

Lossless (entropy): (X ray images!) run-length, statistical encoding (Huffman coding, ...

Lossy: ➡ exploit spatial redundancy

Transform: ➡ frequency domain, higher quantization steps for higher frequencies

Vector quantization: map $N \times N$ block into N^2-dimensional space and find closest in codebook

Model-based: geometric description ➡ very low bit-rate
Images

X-ray digitization: 4000 pixels x 4000 lines, at 12 bits/pixel
slide: 120-150 dpi for 6.75” x 10.25”
70 mm movie: 2210 lines
35 mm film: 1753 lines
slide film: 100 lines/mm (2500 lines/inch)
HDTV: 1125 lines
fax: 200 lines/inch

Video coding: JPEG (Joint Photographic Experts Group)

• individual (still) pictures
• lossless or lossy
• typically about 2 Mb/s for video stream
• discrete cosine transform (DCT): samples ➔ blocks (16x16 Y, 8x8 UV) ➔ frequency domain 2D matrix, (0,0) = “DC”

\[B_{u,v}(i, j) = \cos \left(\frac{(2i + 1)u\pi}{16} \right) \cos \left(\frac{(2j + 1)v\pi}{16} \right) \]

with the transformed image

\[F(u, v) = \frac{2}{N} C(u)C(v) \sum_{i=0}^{7} \sum_{j=0}^{7} f(i, j) B_{u,v}(i, j) \]

Video coding: JPEG

code frequency sampled with different resolution Q

DC or average (0,0) value: difference to previous block

<table>
<thead>
<tr>
<th>DCT Coefficients</th>
<th>Quantized coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantization table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 4 4 4 16 20</td>
</tr>
<tr>
<td>4 4 4 4 4 4 16 20</td>
</tr>
<tr>
<td>4 4 4 4 4 4 16 20</td>
</tr>
<tr>
<td>16 16 16 16 16 16 16 16</td>
</tr>
<tr>
<td>10 10 10 10 10 10 10 10</td>
</tr>
<tr>
<td>10 10 10 10 10 10 10 10</td>
</tr>
<tr>
<td>10 10 10 10 10 10 10 10</td>
</tr>
<tr>
<td>10 10 10 10 10 10 10 10</td>
</tr>
</tbody>
</table>
JPEG

- zig-zag scan:

```
150 92 26 310
0 0 0 0
80 75 19 200
0 0 0 0
```

- run-length coding: group all zeros
- Huffman coding

MPEG (Motion Picture Experts Group)

Audio and video:

- JPEG + motion compensation ≈ H.261, MPEG video
- MPEG-1: 1.2 Mb/s fixed rate (CD ROM)
- MPEG-2: higher resolutions (HDTV), scaling
- image prediction: intra (I), forward (P), bidirectional (B)
 - IBBPBBPBBBIBBPBBPBB
- need I frames for error resiliency, joining movie in the middle

MPEG I, P, B

B frames need to wait for next frame.
MPEG: motion compensation

- transmit “motion vectors” to account for panning and zooming ⇒ hard to find (must try lots), easy to decode

H.261 video codec

- ISDN \((n \times 64 \text{ kb/s})\) conferencing \(\rightarrow\) lower delay
- conditional replenishment: only transmit blocks that are different
- motion vectors for each 16x16 macroblock: \(\pm 15\) integer pixels
- GOB: 11 macroblocks H, 3 macroblocks V, marked by start code

H.263 video codec

- sub-QCIF \((128 \times 96)\), 4CIF \((704\times576)\), 16CIF \((1408\times1152)\)
- motion prediction outside frame
- advanced prediction mode: 4 vectors for each 8x8 block
- advanced intra prediction – within picture
- slice-structured mode: non-overlapping rectangles
- scalability: temporal (B frames), SNR, spatial

HDTV

- subset of MPEG-2 video compression, Dolby AC-3 audio compression
- vestigial sideband modulation (8-VSB) of 19 Mb/s or 16-VSB for two channels in CATV
- formats:
 1280 x 720 24, 30, 60 Hz progressive scan
 1920 x 1080 24, 30 progressive, 60 Hz interlaced
- MPEG-2 transport stream: fixed-length 188-byte packets (4x47 ATM cells)
- one channel = one or more programs
Multiplexing

Pack multiple streams into a single lower layer

- IETF: MIME, RTP (later)
- ITU: H.221 (synchronous, 80x8)
- MPEG: elementary, transport, program
- file formats: AVI, QuickTime

Characteristics of digital audio and video

<table>
<thead>
<tr>
<th></th>
<th>audio</th>
<th>video</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate</td>
<td>5.3…64…1500 kb/s</td>
<td>0.2…1.5…19 Mb/s</td>
</tr>
<tr>
<td>loss tolerance</td>
<td>(\leq 5%)</td>
<td>(10^{-5})…10%</td>
</tr>
<tr>
<td>packet size</td>
<td>small</td>
<td>large</td>
</tr>
<tr>
<td>traffic</td>
<td>constant + silences</td>
<td>variable bit rate</td>
</tr>
</tbody>
</table>

Audio traffic models

talkspurt: constant bit rate: one packet every 20…100 ms \(\Rightarrow\) mean: 1.67 s

silence period: usually none (maybe transmit background noise value) \(\Rightarrow\) 1.34 s

\(\Rightarrow\) for telephone conversation, both roughly exponentially distributed

- double talk for “hand-off”
- may vary between conversations…\(\Rightarrow\) only in aggregate

Video traffic models

- easy case: fit into constant bit rate

- alternative: variable rate \(\Rightarrow\) mux gain of \(\approx 2…6\)

- short time scales: packets within slice or frame

- medium time scales: I, B, P packet pattern

- longer time scales: scene changes (every few seconds) \(\Rightarrow\) higher rate

- looks similar at all time scales, long-term correlation, heavy-tailed distribution \(\Rightarrow\) self-similar

- but: for short queues, long-term correlations don’t matter