

Projections

- Projections transform points in n-space to m-space, where $m \leq n$
- In graphics, we map from 3D to 2D
- Map points from 3-space to the projection plane (PP) along projectors emanating from the center of projection (COP)

Properties: projections vs. Euclidean

- Preserved with Euclidean transformations but not with projections
 - Distance
 - Angle
 - Parallelism
 - Ratios
- Preserved with projections
 - Lines map to lines
 - Intersections
 - Tangency
 - Cross-ratios

\[\frac{a-b}{a-c} = \frac{d-c}{d-b} \]

Perspective vs. parallel projections

- Perspective projections
 - Distance from COP to PP finite
 - Size varies inversely with distance - looks realistic
 - Distance and angles are not (in general) preserved
 - Parallel lines do not (in general) remain parallel
- Parallel projection
 - Distance from COP to PP infinite (use direction of projection DOP)
 - Less realistic looking
 - Good for exact measurements
 - Parallel lines remain parallel
 - Angles not (in general) preserved

Parallel projections

- Two types:
 - **Orthographic projection** — DOP perpendicular to PP
 - **Oblique projection** — DOP not perpendicular to PP
- Two especially useful obliques
 - **Cavalier projection**
 - DOP makes 45° angle with PP
 - Does not foreshorten lines perpendicular to PP
 - **Cabinet projection**
 - DOP makes 63.4° angle with PP
 - Foreshortens lines perpendicular to PP by one-half
Vanishing points

- Under perspective projections, any set of parallel lines that are not parallel to the PP will converge to a vanishing point.

- Vanishing points of lines parallel to a principal axis x, y, or z are called principal vanishing points.

- Q:
 - How many of these can there be? 3 (as many as there are principal axes)
 - How many regular vanishing points? Infinite number, as many as pairs of parallel lines in 3D.

Types of perspective drawing

- Perspective drawings are often classified by the number of principal vanishing points:
 - One-point perspective — simplest to draw.
 - Two-point perspective — gives better impression of depth.
 - Three-point perspective — most difficult to draw.

- All three types are equally simple with computer graphics.

Projection taxology

- Let's analyze central projection:
 - Center of projection (COP) at origin.
 - Projection plane perpendicular to z-axis, distance d away (on negative side).

- Project point (Y, Z):
 - Draw a straight line through COP.
 - Intersect the line with projection plane.
 - Projects to $(Y_s, -d)$.

- Calculate Y_s using similar triangles:
 - $Y_s = \frac{Y}{Z} \iff Y_s = -\frac{d}{Z}Y$.
 - Projection means multiplication with $-d / Z$.
 - $-d$ is constant, Z depends on the point.
 - Nonlinear because of the division with Z!
A typical eye space

- **Eye**
 - Acts as the COP
 - Placed at the origin
 - Looks down the negative z-axis
- **Perspective projection**
 - \([x \ y \ z]' \rightarrow [-1/z \ x, -1/z \ y, -1]'\)
 - Switch to homogen. coords
 - \([-1/z \ x, -1/z \ y, -1, 1]'\)
 - multiply with \(-z\)
 - \([x, y, z, -z]'\)

Screen
- Lies in the PP
- Perpendicular to z-axis
- At distance 1 from the eye

What about Z?
- Now all points project to \(Z=-1\)
 - a mapping from “eye space” to image plane
- What do we really want?
 - project X and Y coordinates as stated
 - keep Z-information around for figuring out relative depths
- Solution
 - choose which part of the world should be visible
 - map the z-values of the visible part between –1 (near) and 1 (far)
 - introduce a mapping from “eye space” to “projection space” or “normalized device coordinates”
- Invertible projection matrix
 - as a side product, the projection matrix becomes invertable
 - allows to project the points back to original “eye space”

Viewing frustum
- **View cone**
 - starts from the view point, goes through the view port
 - for now, let the sides of the cone be planes
 - \(z = x, z = -x, z = y, z = -y\)
 - so we get 90 degree vertical and horizontal opening angles
 - view through a window at –1 in z, from –1 to 1 in x and y
- **View frustum** is the view cone, cut by two planes
 - near (hither)
 - far (yonder)
 - frustum = a truncated pyramid
- Only things within view frustum are visible

Perspective normalization
- Map the view frustum into the unit box \([-1,1]x[-1,1]x[-1,1]\)
- With the previous page’s view box for \([-1,1]x[-1,1]\)
- Need to map z of near (-n) to -1 and z of far (-f) to 1
 - don’t let x or y influence z
 - calculate what the matrix must be!
What does it mean?

- Let's transform some points
 - \(P[x, y, -n, 1]' = [x, y, (f + n - 2fn)/(f-n), n]' = [x/n, y/n, -1, 1]' \) point in near plane moves to -1
 - \(P[x, y, -f, 1]' = [x, y, (f + f - 2fn)/(f-n), f]' = [x/f, y/f, 1, 1]' \) point in far plane moves to 1
 - \(P[0, 0, 0, 1]' = [0, 0, -2fn/(f-n), 0]' \) eyepoint moves to infinity
 - \(P[0, 0, -1, 0]' = [0, 0, (f + n)/(f-n), 1]' \) point infinitely far becomes local

- Mapping of depths
 - behind the eye
 - between eye and near
 - visible
 - beyond far

More illustrations

- What about a line of telephone poles?
 - equidistant, equal heights in metric space
 - decreasing distances, shortening, and flipping in projective space
 - Perspective foreshortening is visible
 - lines get shorter (the y component)
 - but also z gets “denser” with distance
 - what’s the effect in z resolution?

Z resolution

- Assume all objects are between 4 and 5 units from camera
 - z-buffer resolution to cover z in [-1,1]
 - 24 bits: resolution in z is \(1.2 \times 10^{-7} \) (after projection)
 - 16 bits: resolution in z is \(3.1 \times 10^{-5} \) (after projection)

- Set near = 0.001, far = 1000
 - \(\alpha = -1, \beta = -0.002 \)
 - 4 maps to 0.9995, 5 maps to 0.99996
 - need over 14 bits \(\log(2 / (0.9996 – 0.9995)) = 14.3 \) to locate the visible part in z, i.e., wasting over 14 bits, leaving < 10 useful bits with 24 bit, < 2 bits with 16 bit buffer!

 - Set near = 0.001, far = 10
 - \(\alpha = -1, \beta = -0.02 \)
 - 4 maps to 0.9997, 5 maps to 0.9998
 - same waste of z resolution!

- Set near = 1, far = 1000
 - \(\alpha = -1.2222, \beta = -2.2222 \)
 - 4 maps to 0.66667, 5 maps to 0.77778
 - now waste only a bit more than 4 bits

 - Set near = 1, far = 1000
 - \(\alpha = -1.0020, \beta = -2.0020 \)
 - 4 maps to 0.50150, 5 maps to 0.60160
 - almost the same situation!

- Lesson:
 - beginners set near close to camera and far really far => too little effective z resolution
 => objects’ relative depth ordering becomes random
 - set near as far from camera as you can!
 - far doesn’t matter much at all
General view frustum

- `glFrustum(l,r,b,t,n,f)`

 - Shear asymmetric frustum to become symmetric around -z
 - map \([(r+l)/2, (t+b)/2, -n, 1]\) to \([0, 0, -n, 1]\)
 - Scale sides to \(\pm z\), \(\pm z\)
 - map \([(r-l)/2, (t-b)/2, -n, 1]\) to \([n, n, -n, 1]\)

The easy way in OpenGL

- `gluPerspective(fovy, aspect, n,f)`

General orthographic matrix

- `glOrtho(l,r,b,t,n,f)`

 - View frustum already a box
 - no need for the projective division
 - Translate center to origin
 - map \([(r+l)/2, (t+b)/2, -(f+n)/2]\) to \([0,0,0]\)
 - Scale to a \([-1,1]\) box
 - map \([(r-l)/2, (t-b)/2, -(f-n)/2]\) to \([1,1,1]\)

Oblique projection matrix

- Not built-in into OpenGL!
- Do it by two shears
 - followed by orthographic projection

\[
\begin{align*}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix} & \begin{bmatrix}
2n & 0 & 0 & 0 \\
0 & 2n & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix} & \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\end{bmatrix} =
\end{align*}
\]
Perspective transformations in OpenGL

- `glMatrixMode(GL_PROJECTION)`
- `glLoadIdentity()`
- `glOrtho(left,right, bottom,top, near,far)`
- `glFrustum(left,right, bottom,top, near,far)`
- `get / set:
 - `glLoadMatrix(mat)`
 - `mat = glGetDoublev(GL_PROJECTION_MATRIX)`
 - `mat` is a float[16], in column-major order (like Fortran)!
- `glMultMatrixf(mat)`
- `glPushMatrix(), glPopMatrix()`
- `gluPerspective(fovy, aspect, near,far)`
- `gluOrtho2D(left,right, bottom,top)`

Window-to-viewport mapping

- Want to do a linear mapping
  ```
  \[
  \begin{align*}
  x & = sxx (x - L) + L \\
  R & = sxx (x - L) + L \\
  y & = syy (y - B) + B \\
  T & = syy (y - B) + B \\
  \end{align*}
  \]
  ```

Clipping

- Dropping out things that are not visible
 - points are stay or go
 - lines may get shorter
 - parts of polygons can be clipped off
 - if new vertices introduced (lines, polygons) properties (color, etc.) will have to be interpolated
- Order of processing in OpenGL
 - modeling transformations (=> camera coordinates)
 - user-defined clip planes
 - lighting and shading
 - apply projection matrix (=> clip coordinates)
 - clipping
 - projective divide (division by w) (=> normalized device coordinates)
 - rasterization
 - scissor test (if enabled, modifies only pixels within scissor box)

Cohen-Sutherland clipping

- How to make clipping cheap?
 - avoid it!
- Detect whether need any clipping
- Calculate **outcodes** for line end points
 - in 2D: 4 bits
 - how many in 3D? \(3 \times 2 = 6\)
- Easy to do in hardware

<table>
<thead>
<tr>
<th>1010</th>
<th>1000</th>
<th>1001</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010</td>
<td>0000</td>
<td>0001</td>
</tr>
<tr>
<td>0110</td>
<td>0100</td>
<td>0101</td>
</tr>
</tbody>
</table>

Meaning of bits:
- 1XXX: above viewport
- X1XX: below viewport
- XX1X: left of viewport
- XXX1: right of viewport
Cohen-Sutherland cases

- Compare (bitwise) outcodes o1 and o2 of the end points of an edge
- Four cases
 - A: o1 = o2 = 0
 - accept: the line is completely inside
 - B: o1 ≠ 0, o2 = 0 (or vice versa)
 - clip: one end inside, the other outside
 - C: o1 & o2 ≠ 0
 - reject: line segment fully outside one edge
 - D: o1 & o2 = 0
 - can’t tell: both ends outside, but not of the same edge!

Intersect line with window

- Example: clip with line y = 0
- Solve t from the equation for y:
 \[y(t) = (1-t) y_1 + t y_2 \]
 \[\Rightarrow 0 = (1-t) y_1 + t y_2 \]
 \[\Rightarrow 0 = y_1 + t (y_2 - y_1) \]
 \[\Rightarrow t = y_1 / (y_1 - y_2) \]
- get x(t)
 \[x(t) = (1-t) x_1 + t x_2 \]

Liang-Barsky clipping

- Solve t1, t2, t3, t4 in order
- If t < 0 or t > 1, ignore
- In the first example the order is
 \[0 < t_1 < t_2 < t_3 < t_4 < 1 \]
 - in this case we only need to solve the intersection points for y2 and x3
- In the second example the order is
 \[0 < t_1 < t_3 < t_2 < t_4 < 1 \]
 - see from the order that the line does not hit the window and can be rejected

Parametric line representation

- Represent a line as an affine combination of two points
 \[p(t) = (1-t) p_1 + t p_2 \]
- Coordinate version
 \[x(t) = (1-t) x_1 + t x_2 \]
 \[y(t) = (1-t) y_1 + t y_2 \]
- What if
 - t = 0?
 - at p1
 - t = 1?
 - at p2
 - t between 0, 1?
 - between p1 and p2
 - otherwise?
 - on the line of p1 and p2, but elsewhere
Clipping polygons

- Ignore concave polygons
 - split them into convex parts

- Clip against one window edge at a time

Plane definition

- Plane
 - is the set of points whose difference (a vector)
 - is perpendicular to the normal vector

- Assume we have
 - normal vector \(\mathbf{n} = (a,b,c) \)
 - point \(\mathbf{p}_0 \) on the surface
 - an arbitrary point \(\mathbf{p} = (x,y,z) \)

- Let’s write this out
 - vector on the surface: \(\mathbf{p} - \mathbf{p}_0 \)
 - that’s perpendicular to \(\mathbf{n} \)

\[
0 = \mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = \mathbf{n} \cdot \mathbf{p} - \mathbf{n} \cdot \mathbf{p}_0 = ax + by + cz + d,
\]

where \(d = -\mathbf{n} \cdot \mathbf{p}_0 \)

Extra clipping planes

- OpenGL allows to define extra clipping planes

 - \texttt{glClipPlane(plane, equation)}
 - \(\text{plane} = \text{GL_CLIP_PLANE}i \)
 - \(\text{equation} = \{a,b,c,d\} \)

- test for being on the positive side: \(ax + by + cz + d \geq 0 \)
- clipping done in camera coordinates
- as usual, need to enable

- The way it’s done: Clipping a line with a plane:

 - line: \(\mathbf{p}(t) = (1-t) \mathbf{p}_1 + t \mathbf{p}_2 \)
 - plane: \(\mathbf{n} \cdot (\mathbf{p}(t) - \mathbf{p}_0) = 0 \)

 - insert line equation and solve for parameter \(t \):

\[
\begin{align*}
\mathbf{n} \cdot (t(\mathbf{p}_2 - \mathbf{p}_1) + \mathbf{p}_1 - \mathbf{p}_0) &= 0 \\
\Rightarrow \mathbf{n} \cdot (\mathbf{p}_2 - \mathbf{p}_1) &= \mathbf{n} \cdot (\mathbf{p}_0 - \mathbf{p}_1) \\
\Rightarrow t &= \frac{\mathbf{n} \cdot (\mathbf{p}_0 - \mathbf{p}_1)}{\mathbf{n} \cdot (\mathbf{p}_2 - \mathbf{p}_1)}
\end{align*}
\]

Guard band clipping

- Clipping is slow
 - new vertices are introduced
 - must interpolate values (colors, alpha, texture coordinates, fog, …)
 - can destroy coherency of triangle strips, etc.

- Scissoring can be faster
 - just skip the pixels outside the viewport

- Near and far clipping unchanged

- Green triangles can be trivially rejected
- Blue triangles can be trivially accepted
- Red triangle must be clipped
Transformation pipeline

- Object coordinates (Modelview matrix)
- World coordinates (Modelview matrix)
- Camera/Eye coordinates (Projection matrix)
- Clipping coordinates (Homogeneous division)
- Normalized device coordinates (Viewport transformation)
- Window/Screen/Image/Viewport coordinates

Example: Analyze the maths

```c
glViewport(10,50,150,200)
glClear(GL_COLOR_BUFFER_BIT)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
glFrustum(0,2,-1,.5,1,10)
glMatrixMode(GL_MODELVIEW)
... in(GL_TRIANGLES)
gColor3f(1,0,0)
gVertex3f(0,0,0)
gColor3f(0,1,0)
gVertex3f(5,0,0)
gColor3f(0,0,1)
gVertex3f(0,4,0)
gEnd()
```

Window is 300x300

Projection matrix

```c
glFrustum(0,2,-1,.5,1,10)
• Projection from eye to screen
• Map -1 to -1 and -10 to 1

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

\[
z' = (az + \beta)/-z = -\alpha - \frac{\beta}{z}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

• Shear the center of near plane onto z axis ([1,-1/4,-1] -> [0,0,-1])
• Resize: (2-0, 0.5- -1)/2=(1,3/4) to (1,1)
```

Projection...

- Multiply out
 - scale & shear

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

• and project

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & -1/4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & -1/4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 4/3 & -1/3 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Camera transformation

- gluLookAt(2,7,2, 6,6,6, 0,1,0)
- Camera position is (2,7,2)
- Z is (2,7,2) – (6,6,6) = (-4,1,-4)
- X is VUP x Z = (0,1,0) x (-4,1,-4) = (-4,0,4)
- Y is Z x X = (-4,1,-4) x (-4,0,4) = (4,32,4)
- Check: dot(X,Y) = dot(X,Z) = dot(Y,Z) = 0
- Normalize and get cam->world
 - X = (-1,0,1) / sqrt(2)
 - Y = (1,8,1) / sqrt(66)
 - Z = (-4,1,-4) / sqrt(33)

Invert to get world->cam:
- transpose the rotation part
- multiply that with neg. translation

Modeling transformation

- glTranslatef(4,5,7)
- glRotate(60, 0,0,1)

First vertex: (0,0,0)
- modeling
- to camera
- and projection

Transform vertices

- First vertex: (0,0,0)
 - modeling
 - to camera
 - and projection
To viewport

\[
\begin{bmatrix}
-3.101 \\
0.264 \\
4.161 \\
5.222
\end{bmatrix}
= \begin{bmatrix}
-0.594 \\
0.050 \\
0.797 \\
1
\end{bmatrix}
\]

- Homogenous division to NDC:
 - x: 10 + 150 * (-0.594-(-1))/2 = 40
 - y: 50 + 200 * (0.050-(-1))/2 = 155

- Second vertex in NDC: (-.943, 1.077, .864)
 - needs clipping!
 - screen coordinates would have been (14, 258)
 - calculate t from y:
 - (1.077 – 0.050) * t = (1.000 – 0.050) => 0.925
 - new screen coordinates
 - x: 40 + (14-40)*t = 16
 - y: 155 + (258-155)*t = 250
 - color: (1,0,0) + ((0,1,0) – (1,0,0))*t = (0.075, 0.925, 0)

Virtual trackball

Inspect an object by
 - rotating
 - panning
 - zooming

Rotating

- Rotate an object around its center
 - \(p' = R(p - c) + c = T_c R T_c^{-1} p \)

- What’s R?
 - imagine a unit sphere over the viewport
 - when you click a point, project it onto the sphere
 - the rotation is the one that rotates the sphere from the first point to the second
 - get angle from dot product
 - \(\arccos(p_0 \cdot p_1) \)
 - get axis from cross product
 - \(p_0 \times p_1 \)
 - use quaternion (or glRotate)

Panning

- Effect:
 - the point you click,
 - at the distance of rotation center,
 - should stay glued to the mouse pointer

- In other words:
 - how big a translation of object center corresponds to one pixel?
 - if that scale factor is \(s \),
 - and you move \(dx, dy \) pixels,
 - translate by \(s dx, s dy \)

- What is \(s \)?
 - project object center to image
 - move by one pixel
 - project back to 3D
 - calculate distance

\[
\begin{align*}
\text{win} &= \text{gluProject}(\text{obj}_c[0], \text{obj}_c[1], \text{obj}_c[2]) \\
\text{obj} &= \text{gluUnProject}(\text{win}[0], \text{win}[1]+1, \text{win}[2]) \\
s &= \text{dist}(\text{obj}, \text{obj}_c)
\end{align*}
\]
Zooming

• For zooming
 • modify the distance from camera to object
 • so that the same mouse motion corresponds to the same relative zooming, must change distance by a multiplicative factor
 • e.g., multiply distance by $2^{(dy / a)}$
 • if dy == a pixels, distance doubles
 • if dy == -a pixels, distance halves