Modeling from scan data

- Components
 - Scanning
 - example using structured light:
 - calibrate a light source and a camera
 - project light stripe so it hits the scanned object
 - which pixel in camera image is illuminated determines 3D position
 - Registration
 - of scans into a single coordinate system
 - Merging
 - scans into a single representation
 - Representing meshes
 - Compressing meshes

Scanning

- Sweep a vertical light stripe in small steps
- Detect the stripe from camera images
- Project a line from a pixel to the right image
- Triangulate

Scanner setup

Dense range (and color) from stereo + active light

- 4 Sony video cameras
- light projector
- turntable
- lamps

- Relative orientation of laser and camera known (calibrated)
 - in this case, the more left the curve on camera image, the closer it is to the laser source
Two sub-problems to solve registration

- **Correspondence**
 - Given a point in one view, which point in the other view corresponds to the same surface point?

- **Alignment**
 - Given point correspondences, which rigid motion aligns the surfaces (or paired points)?

- Which is harder?

 Correspondence. It is a combinatorial problem, and we can usually solve it only indirectly (just comparing two points, it is hard to say whether they match unless you consider a lot of other data) whereas there is a closed form solution for the alignment problem.

Iterative closest points (ICP)

- Start from an approximate registration
- Pairing heuristic
 - match a point with the closest compatible point
 - compatibility heuristics typically local surface properties such as color, normal, curvature, ...
- Iterate between solving the correspondence and alignment problems
 - # P, Q are point sets
 - while not close_enough(P, Q):
 - for p in P:
 - # find matching pairs
 - pairs.append((p, Q.closest(p)))
 - Q.move_closer(pairs) # align

Multiview alignment

- In pairwise registrations small errors accumulate
 - scans A, B, C, D, E, F
 - A and B registered, very small error
 - same with others
 - F and A should close the circle, but F has drifted far from A
- Solution:
 - gather solutions for pairwise alignments
 - enforce them all at the same time
 - especially make sure that F must remain close to A
 - gives a strong constraint for correct registration
 - this diffuses the errors evenly among all the pairs
Merging

- Registration moves meshes into a single coordinate system
- We still need to merge them into a single mesh
- First, a couple of preliminaries
 - signed-distance functions and isosurfaces
 - the marching cubes algorithm
- Then a few methods to create (or merge) meshes

Signed-distance function, isosurface

- An implicit definition of surface
- Create a function f that you can evaluate at any (x,y,z)
 - returns a distance to the surface
 - distance from outside of the object has a different sign (say negative) than from inside
 - don’t need to explicitly represent this, only evaluate
- The surface is defined by the isosurface $f(x,y,z) = 0$
- Extract the surface using, e.g., the marching cubes algorithm
 - coming in a few slides…

Marching cubes

- An algorithm for extracting isosurfaces $f(x,y,z) = c$
- Evaluate
 - in a regular grid
 - whether $f(x,y,z) > c$ or $f(x,y,z) \leq c$
- The grid forms a set of cubes
 - find a cube that intersects the surface
 - triangulate the isosurface within the cube
 - propagate the cubes along the surface
 - obtain the full isosurface, one cube at a time
- Create a table of all vertex colorings
 - black if $< c$
 - white otherwise
 - store the triangle connectivity
 - how many entries in the table?
 \[2^8 = 256 \]

14 distinct entries

- The rest 242 entries are various rotations/mirrorings of these
Tessellations

- Introduce a vertex on each edge with vertices of opposite colors
 - the structure (triangle tessellations) is pre-calculated
 - the exact vertex location on the edge e.g. by linear interpolation:
 at start \(f(x) = -1 \), at end \(f(x) = 2 \) => put the vertex at 1/3 of the way

The ambiguity problem

- Tessellations not unique!
- We don't have enough information to always make the correct interpretation
- Have to be careful in order to not introduce holes
- One possible solution:
 - create a table of all 256 entries
 - figure out which entries could be neighbors
 - i.e., if the opposite walls have a matching pattern of black and white vertices
 - make sure that tessellations and the triangle edges match

Marching squares Java applet

- A 2D isosurface defined by two centers and radii
 - the function is symmetric, but sampling on a regular grid produces irregular shapes
 - notice how the extracted regions join already before the functions join

A mesh by combining patches

- Example: zippering
 - Turk & Levoy 94
- Two overlapping patches
- Figure out the overlap
- Keep one of the meshes
 - or peel from both meshes until barely overlap
- Clip the other mesh to the boundary of the mesh we'll keep
- Re-triangulate, connect
A mesh from unorganized points

- Hoppe *et al.* 92
 - define a signed distance function for a set of unorganized points
 - extract the isosurface using marching cubes
- Preprocessing
 - for each 3D point, define an outside normal vector
 - fit a plane to the point and \(n \) neighbors
 - create a data structure for finding closest points (e.g., KD-tree)
- Evaluation
 - for a given point \(p \), find the closest point \(c \)
 - determine the distance from its tangent plane
 - if the point is on the outer side of the plane, the distance is positive
 \[n \cdot (p - c) \]

A mesh from range grids

- Curless & Levoy 96
 - Each scan defines the signed-distance function
 - scan by laser-camera combination as we saw before
 - close to the surface along line of sight
 - Combine several registered scans into a voxel grid
 - update a weighted average of the distances for each voxel

Space carving

- If you can see a surface, the intervening space is free
- Define
 - unseen (inside) has distance \(D_{\text{max}} = D \) and empty \(D_{\text{min}} = -D \)
 - close to surface it's the distance to the observed surface
 - creates a zero-crossing (=surface) between unseen and empty

Drill bit example

- Several noisy scans of a very small drill bit
 - registration from known rotation of target between scans
 - individual meshes very noisy, zippering fails
 - but adding and averaging signed distances into voxels works
 - noise is averaged out, lots of real data remains

The scanned object
Scan data
Mesh representations

- Regular grid
- Indexed representation
- Ordered vertex neighbors
- Edge-based data structures
 - Winged-edge
 - Half-edge
 - Quad-edge

Regular grid

- Store the 3D data like an image, just the vertex data
- The faces and edges are implicit
- No overhead to store the connectivity!

Vertex lists and indices

- We saw this already in VRML
 - define a list of vertices
 - connectivity:
 - polygons refer to the vertices by their index
 - special index (-1) to mark end of a polygon
- Pros
 - general
 - simple
 - fast to render
- Cons
 - hard to access neighbors
- How many indices do we need?
 - assume triangle mesh, on the average 6 triangles adjacent to each vertex

Ignoring endings (-1):

- Triangles: 6 indices / vertex
- Triangle strips: >2 indices / vertex

Ordered vertex neighbors

- For each vertex, store indices to the neighbors
 - order the indices consistently, e.g., CCW order
- Need as many indices as with separate polygons
 - number of edges x 2
- Now you can traverse the mesh
 - traversal somewhat awkward
 - but in some applications you need only the neighbors
 (such as subdivision surfaces)
Winged-edge data structure

- Designed to make finding neighbors easy
- Contains
 - E_1 is this edge
 - edges E_2-E_5 make out the wings
 - faces F_1, F_2 both sides of the edge
 - vertices V_1, V_2 at the ends of the edge
- Faces and vertices have pointers to one incident edge
- Lots of overhead!

Half-edge data structure

- Store only "half" of the edge (E)
 - the half that belongs to the adjacent face
 - include a pointer to the other half
- Slightly less overhead and a bit more flexible
- If you have only triangles, you can simplify a bit more
 - How?
 $$E_2 \text{ is not needed: } E \rightarrow E_2 = (E \rightarrow E_1) \rightarrow E_1$$

Quad-edge data structure

- Simple, elegant, optimal in storage space
 - encodes both the mesh and its dual
 - dual of a mesh means replacing faces with vertices and vice versa
 - what's the dual of a tetrahedron? of a cube? *tetrahedron octahedron*?
 - encodes even non-orientable surfaces
 - Moebius strip and Klein bottle are non-orientable
- But difficult to get the correct intuition when manipulating
- Four directed edges, each with pointers to
 - "next" edge
 - data
- For one pair of edges data is
 - vertices
 - for the other, its faces

Quad edges

- Both vertices and faces are defined implicitly as connected loops
Mesh simplification
- Find a new smaller mesh that is still similar to the old one
 - when the object is far, and appears small, can draw it cheaper with no visual loss

Subsampling
- Simple and fast
- Only for regular meshes
- Severe aliasing artifacts, since which vertices remain are not affected by where the features, such as edges, are

Bin-and-connect
- Related to subsampling, but also for irregular meshes
- Procedure
 - subdivide the space into regular bins
 - average all the vertices in a bin into a single new vertex
 - reconnect vertices
- Less aliasing
- Fast
- Still not very good results

Mesh optimization
- Assume triangle mesh
- Apply mesh operations:
 - edge can be
 - collapsed to a vertex
 - split into two
 - (must introduce two more)
 - swapped in orientation
- Minimize a function with two terms
 - geometric term tries to keep the mesh close to original data
 - connectivity term favors simpler meshes
- Slow, but quality of output pretty good
Quadric error metric

- Generalized vertex contraction
 - can also contract vertices that are not neighbors, i.e., not connected by an edge

- Avoids fragmenting things that are nearby but not connected

Garland & Heckbert 97

The metric

- Each vertex
 - has a number of associated faces
 - is located close to the faces

- A 4x4 symmetric matrix compactly stores information about the associated planes
 - interpretation: the matrix describes an ellipsoid
 - the optimal location for a vertex is at the center, then it's closest to all associated planes
 - merging vertices combines the ellipsoids
 - merge if the ellipsoid doesn't grow much

Wavelet decomposition

- The signal processing approach
- Break the data into a smoother/sparser representation
 - get wavelet coefficients that encode the difference between the two levels
 - compression: ignore the small coefficients

- Problem: need regular subdivision connectivity!

Remeshing

- Fit a new mesh that has the subdivision connectivity

Lounsbery et al. 94

Eck et al. 95
Then reconstruct

- Now can perform the wavelet decomposition
 - keep only the larger coefficients
 - when they are added back, that creates triangles
 - but on flat portions, triangles remain large

Simplification envelopes

- Create an envelope to the surface
 - two offset surfaces
 - inwards
 - outwards
 - empty space remains between envelopes
- Now simplify the mesh
 - edge/vertex contractions, binning, ...
 - just make sure the mesh remains fully within the envelope

Progressive meshes

- Idea
 - keep track of the vertex contractions to make a continuous set of progressively more and more simplified meshes
 - also consider other data such as colors, normals, ...
 - when adding/removing detail, smoothly morph to avoid "popping"
 - in the end, get the original mesh

Progressive forest split compression

- Taubin et al. 98
- Remove simply connected trees of triangles
- Can encode connectivity for 1-2 bits per triangle
- Encode vertex positions
 - predict positions
 - store differences from predictions
 - vector quantize the differences
Vertex compression

- Quantify the vertex locations to save bits
 - can do in addition to compact storage of connectivity
- Artifacts can be reduced by smoothing in the end