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Abstract

In this paper we address the problem of automatic measure-
ment of the shape of sewer pipes. We describe a method for
recovering the interior shape of a sewer pipe from a video
sequence that is acquired by a �sh-eye lens camera moving
inside the pipe. The method is based on solving the general
structure-from-motion problem by tracking interest points
across successive video frames. Here the interest points are
points where the image intensity changes rapidly due to ir-
regularities in the surface texture of the pipe. The experi-
ments with real videos of concrete pipes show that the shape
of a sewer pipe can be recovered solely from the video. The
proposed method can be additionally used in other appli-
cations to recover the scene structure from video sequences
taken by a calibrated �sh-eye lens camera.

1. Introduction

The condition assessment of sewer pipes is usually carried
out by visual inspection of sewer video sequences. How-
ever, the manual inspection has a number of drawbacks such
as subjectivity, varying standards and high costs. Therefore
several approaches for automation of sewer surveys have
been suggested. For example, automatic detection of pipe
joints and surface cracks from digital sewer images has been
investigated [2]. In [13], a method for automatic detec-
tion of pipe joints and their shape analysis was proposed.
An idea of recovering the three-dimensional shape of a sur-
veyed pipe from survey videos was presented in [3], where
a method for determining the pose of the camera relative
to the central axis of the pipe was additionally proposed.
Unfortunately that method is restricted to brick sewers with
visible mortar lines.

Different kinds of sewer robots have been developed and
some of them contain additional sensors, such as range cam-
eras, besides the video camera [7, 11]. While the additional
sensors of multisensoric robots provide additional informa-
tion, they also lead to a more complex and expensive con-
struction.

In this paper, we propose a method for recovering the
shape of a sewer pipe solely from a video sequence that
is acquired by a �sh-eye lens camera. Our approach is to
solve the structure-from-motion problem in the case of �sh-
eye image sequences by tracking interest points across suc-
cessive images. In Section 2, we give an overview of our
method and, in Section 3, we describe its differences to con-
ventional structure from motion approaches in more detail.
Results of the experiments with a real sewer video are re-
ported in Section 4.

2. Overview of the Method

A typical sewer inspection system consists of a video cam-
era and a remote controlled tractor. The sewer robot we
used had a �sh-eye lens camera whose wide �eld of view
makes it possible to obtain a high resolution scan of the
whole pipe by a single pass. Our approach to structure
recovery follows mainly the framework presented in [5].
However, since the usual pinhole camera model is not a
valid approximation to a �sh-eye lens several important
modi�cations are proposed. In the following, we brie�y
describe the different steps in our method.

2.1 Camera calibration

Although the modern approach to structure recovery is often
uncalibrated [5], we adopt the traditional photogrammetric
principle of camera calibration prior to measurements. One
reason for this is the peculiarity of the �sh-eye lens and the
other is the requirement of high accuracy. The calibration
is done by viewing a planar calibration object [10].The cal-
ibration gives the transformation

�

that warps the original
image to a perspective one, i.e., transforms the �sh-eye im-
age coordinates� to �

� �

� �

� � , which are the normalised
image coordinates of a pinhole camera [10].

2.2 Feature extraction and matching

The tracked features are interest points detected by the Har-
ris corner detector, which is widely used in this kind of ap-



plications. The experiments with sewer video sequences
showed that there are plenty of such features in eroded
concrete pipes. The detected interest points are initially
matched between each successive image pair through in-
tensity cross-correlation of the neighbourhood.

2.3 Feature tracking

The putative point correspondences contain almost un-
avoidably some false matches. In the tracking step, the aim
is to use the geometric constraints between successive view
pairs and view triplets to guide the matching and to dis-
card the false matches. This requires some modi�cations
to the usual way of estimating the multiple view geome-
try [5]. The modi�cations are needed to ensure a justi�ed
distribution of estimation error when the image correspon-
dences are measured from the original �sh-eye images and
the two and three view relations, de�ned by the essential
matrix and the trifocal tensor, hold between the corrected
images. We will give a detailed describtion of the proposed
modi�cations in Section 3.

2.4 Reconstruction

The �nal step is to recover the structure by computing
the three-dimensional coordinates of the tracked points. If
enough interest points can be tracked and reconstructed, the
arrangement of the corresponding three-dimensional points
should be tubular allowing to estimate the shape of the pipe.

Here we use a hierarchical method that is similar to [6]
and optimally distributes the reconstruction error over the
whole sequence. The idea is to start by computing the cam-
era motion and the 3D points for each image triplet and
then hierarchically registrate the triplets into longer sub-
sequences which are bundle adjusted at each level. The
difference between our implementation and [6] is that we
use the calibrated approach. This makes the algorithm
simpler since then the registration of two overlapping sub-
sequences requires �nding a similarity transformation in-
stead of a general 3-space homography where the transform
may be computed by a non-iterative algorithm [12].

3. Geometry of Fish-Eye Views and Tracking

Let � �

� be the measured coordinates of point correspon-
dence� in view � . Given these measured correspondences
and assuming that the image measurement errors obey a
zero-mean isotropic Gaussian distribution, the optimal way
of estimating the camera motion is minimising
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where
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� is the distance between two image points and
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� are the estimated correspondences
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Here 


� is the imaging function of the �sh-eye camera in
view � and �

�

� represent the estimated 3D coordinates of
point � . Since the camera is calibrated, the values of the
internal camera parameters [10] are known and the cost (1)
should be minimised over the external camera parameters in




� and the 3D coordinates�
�

� . However, the direct minimi-
sation of (1) requires a good initialisation and does not tol-
erate false matches. Hence, we implemented the RANSAC
algorithm for the robust estimation of camera motion be-
tween view pairs and triplets. The implementation follows
the general recommendations in [8] but the adaptation to the
�sh-eye case is our own and is described in the following.

3.1 Two views

Consider the case of two views,�

�  �

� � � , and assume
that there is a set of putative point correspondences,� �

� �

� �

�

. The transformed coordinates are
�

�

�

�

�

� �

� �

�

� and
the two view constraint between the transformed images is
expressed by the essential matrix [8].

In RANSAC, we randomly select samples of seven point
correspondences and each sample gives one or three candi-
dates for the essential matrix [8]. Then, given an essential
matrix candidate� and the transformed correspondences,
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, there is a non-iterative algorithm [8] for com-
puting such points�
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�

� and �
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�
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that minimise the geometric
distance
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in the transformed image plane subject to the constraint
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By transforming the points�

�
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� to the original image, one
obtains the points
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which may be used as approximations to the optimal exact
correspondences in (1). We use (4) to compute the distances
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and classify the correspondences into inliers and outliers.
It is important that this distance is measured in the original
image since the transformation

�

is highly non-linear. As
usual, the� which has most inliers is chosen and gives our
�rst estimate of the camera motion.

Since the essential matrix may be parameterised with
the rotation and translation parameters [8], the equation (4)
implicitly de�nes the points �

� �

� as a function of the exter-
nal camera parameters and the measured correspondences.
Hence, by substituting the points (4) into (1) one may write



the minimisation problem in the form
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where the vectors�
�

contain the measured correspondences
in both views and� is the 5-vector containing the parame-
ters of the essential matrix. We re�ne our motion estimate
by minimising (6) using only the inlier correspondences.

The cost function in (6) has such a form that as a by-
product of the minimisation one can compute an estimate
for the covariance of the parameters� . This is described in
detail in [4]. The estimated covariance�

� may be used to
compute the epipolar envelopes which constrain the search
region for new correspondences.

Given a point� in the �rst image, the corresponding
epipolar line in the transformed image plane of the second
image is
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and its covariance is approximated by
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where �
� is the covariance of� and the Jacobians are

computed from (7). Assuming that
�

is a random line obey-
ing a Gaussian distribution with the mean at the estimated
value and covariance (8) the epipolar envelope is the conic
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which represents an equal-likelihood contour bounding
some fraction of all instances of

�

[8]. If �

�
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� represents
the cumulative�
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distribution and�
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is chosen such that
�

�

�
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�

�
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� � , then a fraction� of all lines lie within the
region bounded by

�

.
We illustrate the estimated two view geometry in Fig. 1

where two successive images of a sewer video sequence are
shown. We have chosen two points from the �rst image and
plotted the corresponding epipolar curves and envelopes to
the second image by transforming the epipolar lines (7) and
the hyperbolas (9) to the original �sh-eye image. The yel-
low crosses in the second image are the narrowest points of
the envelopes [1]. The narrow envelope of the vertical curve
is the 95 % con�dence interval used in our experiments to
constrain the search region.

3.2 Three views

The two view constraint signi�cantly reduces the occur-
rence of false matches but the three view constraint is even
more effective. In the three-view case, we �rst robustly
estimate the camera motion for view pairs (1,2) and (1,3).

Figure 1: Estimated epipolar geometry for two �sh-eye images.
Two points in the �rst image are chosen (yellow crosses) and their
epipolar curves (magenta curves) are plotted to the second image.
The yellow curves are the epipolar envelopes. The envelope of the
horizontal curve is broad because a very large value of� � � � � � �

was chosen in (9) in order to better illustrate the error bounds.
The narrow con�dence interval of the vertical curve is the 95%
envelope that corresponds to a value� � � � �� � .

Then the only quantity that is left undetermined is the rel-
ative scale of the two translations,�

� �

�

and �

� �� . We use
the RANSAC procedure to determine this ratio from the
three-view correspondences. At minimum only one addi-
tional sample correspondence needs to be drawn [9]. The
distance measure used for the classi�cation of inliers is
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where �

� �

� and �

� �

�

are computed exactly as in (5) and�

� �

� is
the point that is obtained by transferring the correspondence

�

� �

� �
�

� �

�

to the third view with the trifocal point transfer.
The �nal estimate of the camera motion over each triple

of views is re�ned by minimising (1) over both the motion
parameters and the 3D coordinates of the inliers. We addi-
tionally iterate between (i) least-squares �t to inliers and (ii)
re-classi�cation of inliers; until convergence.

The robustly estimated three view geometry is used to
guide the matching when establishing the �nal correspon-
dences. Since the geometric constraint discriminates the
false matches, a weaker similarity threshold can be em-
ployed for the correlation windows. By accepting only such
correspondences that are found from at least three succes-
sive images, the occurrence of false matches becomes very
improbable. The estimated camera motion for each image
triplet also provides a basis for the �nal reconstruction as
described in Sec. 2.4.

4. Experiments

We experimented a sewer video sequence scanned in an
eroded concrete pipe. The uncompressed digital video was
captured from an analog NTSC video signal at a resolu-
tion of  

�

� !

� "

� . The experimented image sequence con-
tained 159 �sh-eye views and covered about two meters of
the pipe. The total number of tracked interest points was
6864. With our current implementation we did not bundle
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Figure 2: Front and top views of the reconstructed 3D points com-
puted from a sequence of 35 images.

-50
0

50

50

100

150

200

-20
0

20
40

60
80

50

100

150

200

Figure 3: Top and side views of the reconstructed points for the
sequence of 159 images. The thick part near the beginning of the
pipe is a pipe socket in a displaced pipe joint.

adjust the entire sequence since the number of parameters
would have been too large for a medium-scale Levenberg-
Marquardt implementation. Sparse optimisation methods
would obviously give a signi�cant advantage, but we here
computed the reconstruction by simply concatenating par-
tial reconstructions that were bundle adjusted separately.

In Fig. 2, there is a three-dimensional reconstruction
of points computed from correspondences over a sub-
sequence of 35 images. There are 1512 points while the
RMS projection error after the �nal bundle adjustment was
0.26 pixels. There are few reconstructed points in the bot-
tom part of the pipe since it is dif�cult to �nd correspon-
dences from the water region. The dense point cluster on
the top is due to a sharp-edged crack in the middle of the
roof. The points inside the pipe near the roof correspond to
a root that is hanging from the roof.

To obtain a reconstruction of the whole pipe section, cov-
ered by the sequence of 159 views, we concatenated six par-
tial reconstructions like shown in Fig. 2. As there is a three
view overlap between each part, the partial reconstructions
have common points and could be transformed into a com-
mon coordinate frame [12]. The result is shown in Fig. 3.
The side view shows that the pipe is bent downwards. The
bending is probably exaggerated here due to the accumula-
tion of error in the concatenation because the concatenated
reconstructions have an overlap of only three views.

5. Conclusions

We have proposed a novel method for recovering the scene
structure from �sh-eye image sequences and applied it to

shape measurements of sewer pipes. The experiments show
that the shape of a sewer pipe may be recovered solely from
a video sequence that is scanned by a single pass through the
pipe. In addition, the proposed framework is directly appli-
cable to structure recovery from any video sequence taken
by a calibrated camera suffering from severe lens distortion
as the camera model [10] can �exibly model different kinds
of distortions. The proposed method can be hence used in a
wide range of potential applications.
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