Towards the Adaptive Identification of Walkers: Automated Feature Selection Using Distinction-Sensitive LVQ

Jaakko Suutala and Juha Röning

e-mail: {jaakko.suutala, juha.roning}@ee.oulu.fi

Intelligent Systems Group
University of Oulu, Finland
Outline

- Introduction
- EMFi Floor
- Footstep Data
- DSLVQ
- Experimental Results
- Conclusions
Introduction

- What we have done?
 - Recognizing walkers from the footprint profiles achieved with a pressure sensitive floor
 - A 100 square meter pressure sensitive floor was used
 - Test classifications included footsteps from eleven walkers
 - An automatic feature selection method applied to identification

- Identification and feature selection
 - A distinction-sensitive Learning Vector Quantization
 - Based on the standard LVQ classifier
 - A weighted distance metric and single feature relevance measurement added
 - Non-informative features get small weight values and are discarded in distance calculation
Introduction(2)

• A part of research on intelligent environments: to learn and to react to the behaviour of occupants
 - Hidden sensory system provides a natural and non-disturbing way to use a personal profile

• Applications
 - Monitoring hazardous situations
 - Surveillance systems
 - Helping child care

• Adaptive online identification system
 - To automatically correct small changes
 - To detect new unknown persons and learn their behaviour

• HOW TO AUTOMATICALLY DETECT THE MOST IMPORTANT FEATURES AVAILABLE?
EMFi Floor

- **ElectroMechanical Film (EMFi)**
 - A thin, flexible, low-price electret material
 - Consists of cellular biaxially oriented polypropylene film coated with metal electrodes
 - It is possible to store a large permanent charge in the film by corona method using electric fields
 - An external force affecting on the EMFi’s surface causes a change in the films thickness resulting a charge between the conductive metal layers
 - This charge can be detected as a voltage, which describes the changes in the pressure affecting the floor

\[
\begin{align*}
F & \rightarrow Q \\
& = \frac{Q}{A} \\
& = \frac{\text{charge}}{\text{area}} \\
& \text{This charge can be detected as a voltage, which describes the changes in the pressure affecting the floor.}
\end{align*}
\]
EMFi Floor(2)

- Floor setting
 - In our research laboratory EMFi material is placed under the normal flooring
 - Consists 30 vertical and 34 horizontal EMFi sensor stripes, 30 cm wide each
- Advantages
 - Number of wires
 - Number of channels to process
- Disadvantages
 - Tracking multiple persons
 - To get “good quality” footsteps for identification
EMFi Floor(3)
EMFi Floor(4)

- EMFi Data
 - Each 64 stripes produces continuous signal
 - Streamed into a PC from where the data can be analysed in order to detect and recognize the pressure events
 - The analogous signal is processed with National Instruments data acquisition card (PCI-6033E), sampling rate can be chosen between 0.1 - 1.54 kHz
 - 100 Hz sampling rate is used in these experiments
EMFi Floor(5)

- Raw data

- Segmented footstep

Intelligent Systems Group
Department of Electrical and Information Engineering and InfoTech Oulu
www.ee.oulu.fi/research/neurogroup
Footstep Data

- Collecting data
 - Footstep data was recorded from eleven different persons
 - The subjects stepped on one particular stripe
 - Collected data contained about 40 steps/person, including steps from both feet

- Pre-processing
 - Finding good-quality steps from noisy data
 - A raw segmentation was made with edge detection using FIR median hybrid filter, convolution, and thresholding
 - Footstep parts from adjacent channels were summed
Footstep Data (2)

- **Features**
 - Each step was divided into two sections: The heel strike and the toe-off peak
 - Several features were calculated from both spatial and frequency domain
 - Totally 31 features were extracted
DSLVQ

- **Learning Vector Quantization (LVQ)**
 - A well known statistical distance based classification method
 - Based on piecewise linear class boundaries, which are determined by supervised learning
- **LVQ classification**
 - Classification is made with a codebook, which contains prototype vectors labeled for each classes
 - Learning algorithm iteratively minimizes the rate of misclassification error by updating the codebook vectors
 - The unknown sample is classified to the closest codebook vector using Euclidean distance
DSLVQ(2)

- LVQ3 training algorithm
 - Two closest codebook vectors \(m_i \) and \(m_j \) belonging to different and same class as \(x \):

 \[
 \begin{align*}
 (1) \quad m_i(t+1) &= m_i(t) - \alpha(t)[x(t) - m_i(t)], \\
 (2) \quad m_j(t+1) &= m_j(t) + \alpha(t)[x(t) - m_j(t)],
 \end{align*}
 \]

 - Two closest codebook vectors \(m_i \) and \(m_j \) belonging to same class as \(x \):

 \[
 \begin{align*}
 (3) \quad m_k(t+1) &= m_k(t) - \epsilon \alpha(t)[x(t) - m_k(t)],
 \end{align*}
 \]
DSLVQ(3)

- Problem of standard LVQ: All features are treated equally in distance metric
- Solution: Weighting of features based on relevance of the single features
 - The non-informative features are assigned with small weight values
 - The informative features are assigned with larger weight values
- Using a weighted distance metric, the non-informative features are discarded!
- Advantages:
 - Feature selection is automatic
 - Feature selection can be moved from the pre-processing phase to the training phase of classifier
DSLVQ(4)

- The weighted Euclidean distance

\[
 w_{dist}(w, x, m) = \sqrt{\sum_{n=1}^{N} [\max(0, w_n)(x_n - m_n)]^2},
\]

- Weight adaptations:

\[
 w(t + 1) = \text{norm}(w(t) + \alpha(t)[nw(t) - w(t)]),
\]

\[
 nw_n(t) = \text{norm}\left(\frac{d_{in}(t) - d_{jn}(t)}{\max(d_{in}(t), d_{jn}(t))}\right)
\]

\[
 \text{norm}(y) = \frac{y}{\sum_{n=1}^{N} |y_n|}
\]
Experimental Results

- Feature selection
 - kNN classifier
 - 2/3 of data set was chosen for classification model, 1/3 for test the model
 - Finding best subset of features using forward-backward-search, minimizing the classification error in the test set
 - 13 features were chosen from the spatial domain
 - For example: $x_{max1}, y_{max1}, x_{min}, y_{min}, x_{max2}, y_{max2}$
Experimental Results (2)

- DSLVQ
 - LVQ codebook size: 18 prototype vectors/class
 - Learning algorithms: OLVQ1 (initialization), LVQ1, LVQ3, DSLVQ (fine tuning)
 - The data sets of 13 and 31 features were used
 - Features were normalized between 0 and 1 at the beginning of training

<table>
<thead>
<tr>
<th>N</th>
<th>w_{ave}</th>
<th>w_{max}</th>
<th>w_{min}</th>
<th>nof $> w_{ave}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0.0769</td>
<td>0.1407</td>
<td>0.0379</td>
<td>7</td>
</tr>
<tr>
<td>31</td>
<td>0.0323</td>
<td>0.0487</td>
<td>0.0056</td>
<td>17</td>
</tr>
</tbody>
</table>
Experimental Results(3)

• The identification results
 • The overall recognition accuracies of 11 walkers
 • Results are averages of 5-fold cross-validation (standard deviation in parentheses)
 • DSLVQ shows best results in both data sets

\[
\begin{array}{|c|c|c|c|}
\hline
N & LVQ1 & LVQ3 & DSLVQ \\
\hline
13 & 66.8\% (\pm 5.4) & 67.4\% (\pm 5.4) & 70.2\% (\pm 5.7) \\
31 & 65.8\% (\pm 5.0) & 66.5\% (\pm 4.7) & 69.4\% (\pm 6.4) \\
\hline
\end{array}
\]
Conclusions

- Experiments on applying automated feature selection to footstep identification were reported
- Method increases adaptiveness: the best subset of features can be chosen automatically during the training of a classifier
- Future plans
 - More analyses: For example, how do person wearing different shoes, backpacks etc. affect the selection of relevant features?
 - How well DSLVQ can adapt to a new situations? For example, when new person is detected
 - Adaptive real-time learning and a recognition application for tracking and identification
 - Detecting mobile robot movements from the floor and the co-operation with occupants