The Capacity of Wireless Ad Hoc Networks

Presentation for the postgraduate course "Ad Hoc Networks"

Mikko Vehkaperä
mikko.vehkapera@ee.oulu.fi

Contents

• Introduction
• Capacity of fixed ad hoc networks
• Capacity of mobile ad hoc networks
• Conclusion
Introduction (1/3)

- This presentation deals with:
 1) **Fixed** wireless ad hoc networks
 2) **Mobile** wireless ad hoc networks
 - Extension of [Gup00] into a case where the nodes are allowed (actually required) to move

Introduction (2/3)

- Theoretical capacity analysis give us guidelines for the fundamental limits of the wireless ad hoc networks:
 - What is the maximum per-user throughput of the network (with given constraints)?
 - How does the network perform in asymptotic conditions (for example, the number of users $n \rightarrow \infty$)?
 - How can we achieve these limits?
 - **Hints for practical design problems!**
Introduction (3/3)

- **Big O notation:**
 1. If $f(n) = O(g(n))$ then $\exists c_2, n_0 \in \mathbb{R}^+ \text{ so that } 0 \leq f(n) \leq c_2 g(n), \forall n \geq n_0$
 2. If $f(n) = \Theta(g(n))$ then $\exists c_1, c_2, n_0 \in \mathbb{R}^+ \text{ so that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0$

![Graph showing Big O notation](image)

Fixed Ad Hoc Network (1/5)

- **Fixed random networks**

 Distance between a node-pair (i,j) is $d_{i,j} = |X_i - X_j|$ and the signal power decreases as $d_{i,j}^{-\alpha}, \alpha \geq 2$; only path loss is considered.

 Transmission that blocks the nearby nodes.

 There are n nodes in the network.

 The area is fixed to a disk of area 1 m^2 (or a surface of a 3-D sphere) for notational convenience.

 All nodes can transmit at a rate of R.

 Nodes that are allowed to transmit.

 Nodes that are not allowed to transmit.

 Transmitting nodes $\{X_i : k \in T\}$ employ nominal transmission powers $\{P_k : k \in T\}$.
Fixed Ad Hoc Network (2/5)

• Under a "physical model", a transmission from X_i to X_j is successful if

$$\frac{P_i}{|X_i - X_j|^\alpha} \geq \beta; \quad (P_i = P_k = P \forall k, i \in T)$$

where L is the processing gain of the system, N_0 the background noise power and β the SINR threshold required by the receiver.

Fixed Ad Hoc Network (3/5)

• A throughput of $\lambda(n)$ is **feasible** if
 – There is a spatial and temporal scheduling scheme π, such that by allowing multiple hops and buffering at intermediate nodes, all nodes achieve an average rate of $\lambda(n)$
 – Random network under the physical model:

$$\exists c_1, c_2 \in \mathbb{R}^+: \begin{cases} \lim_{n \to \infty} \Pr\left\{ \lambda(n) = \frac{c_1 R}{\sqrt{n \log n}} \text{ is feasible} \right\} = 1 \\ \lim_{n \to \infty} \Pr\left\{ \lambda(n) = \frac{c_2 R}{\sqrt{n}} \text{ is feasible} \right\} = 0 \end{cases}$$
Fixed Ad Hoc Network (4/5)

• Implications of the previous result:
 – Within a factor \(1/\sqrt{\log n}\) the average achievable throughput per-node is \(O\left(R/\sqrt{n}\right)\)
 • Achieved with perfect scheduling, routing and relaying; common transmission power \(P\)
 • In practice the situation is much worse!
 – Allowing optimal traffic patterns, per-node power control \((P_i \neq P_k, i \neq k)\), scheduling, etc., the throughput is still \(\Theta\left(R/\sqrt{n}\right)\)

• Dividing the channel into sub-channels does not change the results

Fixed Ad Hoc Network (5/5)

• Conclusion from the results of [Gup00]:
 – What ever we do, the per-user capacity of a fixed wireless ad hoc network diminishes to zero as the “node-density” increases

• Why is the situation so pessimistic?
 – Throughput loss with common transmission range \(r(n)\) is quadratic ⇒ minimize \(r(n)\)
 – Small \(r(n)\) ⇒ large number of intermediate nodes per each “new” packet ⇒ excessive relaying decreases the per-user throughput
 – Lesson: Avoid “dense” ad hoc networks.
Mobile Ad Hoc Network (1/6)

• [Gro02]: With mobility, a constant per-user throughput when \(n \to \infty \) is possible
 – More nodes and movement, the better
 – True if the users are willing to wait (long..)
 – The delay is proportional to the speed of change and the number of nodes in network
 • Works only with delay insensitive applications
 – The users should also stay within a limited area or a large portion of packets is lost
 – Not very realistic, but gives guidelines

Mobile Ad Hoc Network (2/6)

• Assume random ad hoc network and the “physical transmission model”
 – Location of the \(i^{th} \) node at time \(t \) is \(X_i(t) \)
 – Each node has an infinite stream of data to send to its destination
 • Source-destination (S-D) association does not change even though the nodes are moving
 • Distance between node-pair \((i,j)\) at time \(t \): \(d_{i,j}(t) \)
 – Nodes are assumed to have infinite buffers also for the relay-traffic
Scheduling policy π_1 (no relaying):

- Since the interference and/or excessive relaying were limiting the throughput in previous case, allow the mobiles only to transmit directly to each other and when they are closely located.
 - Possible in mobile case, since the randomly moving nodes are expected to be close to each other from time to time.
- Unfortunately the S-D pair is close to each other only $O(1/n)$ of the time.
- Throughput per S-D pair goes to zero as $\frac{1}{n^{1+\alpha/2}}$; for example typical urban scenario: $\alpha = 4 \Rightarrow 1/\sqrt[3]{n}$.

Scheduling policy π_2 (with relaying):

1) Distribute your own packets to other nodes when one is in an immediate vicinity.
2) Transmission of relayed packets is allowed only to destination node.
 - Each packet undergoes a maximum number of two hops.
Mobile Ad Hoc Network (5/6)

- In steady-state every node has packets buffered for every other node
 - The scheduling algorithm π_2 goes as:
 1) The nodes are divided into potential receivers and transmitters based on parameter $\theta \in (0,1)$
 2) Randomly pick one of the possible $\binom{n}{n_s}$ equally likely partitions, where $n_s = n\theta$
 3) Each of the n_s nodes transmits to its closest receiving node if the SINR condition is met
 - For one S-D pair, the direct route and the $n-2$ relayed routes have a throughput of $\Theta(1/n) \Rightarrow$ Total throughput per-node $\Theta(1)$

Mobile Ad Hoc Network (6/6)

- Conclusion from the results of [Gro02]:
 - By assuming
 - Infinite length buffers and information streams
 - Users that are moving and stay in same area
 - Very loose delay constraints
 - Larger number of users (“dense” network)
 - There exists $c \in \mathbb{R}^+$ such that:
 \[\lim_{n \to \infty} \Pr \{ \lambda(n) = cR \text{ is feasible} \} = 1 \]
 - Throughput does not go to zero with n !
 - Scheduling policy π_2 can be implemented also in a distributed manner
Conclusions

• Capacity of fixed and mobile wireless ad hoc networks was briefly examined.

• Per-user capacity of a fixed ad hoc network goes to zero as $1/\sqrt{n}$, regardless of the scheduling policy, routing, etc..

• With loose delay constraints, the average asymptotic throughput per-node in a mobile ad hoc network is $\Theta(1)$, that is, it is constant and strictly non-zero.