VI. Protocol Testing

Outline

- Introduction
 - Concepts
 - Fault models
 - Related definitions
 - General approach

- Methodologies based on FSM
 - T-Method (Transition Tour method)
 - D-Method (Distinguishing sequences)
 - W-Method (Characterizing sequences)
 - U-Method (Unique input/output sequences)

Protocol Conformance Testing

- To confirm if an implementation conforms to its standard
 - External tester applies a sequence of inputs to IUT and verifies its behavior
 - Issue 1: preparation of conformance tests in coverage of IUT’s all aspects
 - Issue 2: time required to run test should not be unacceptably long

- Two main limitations
 - Controllability: the IUT cannot be directly put into a desired state, usually requiring several additional state transitions
 - Observability: prevents the external tester from directly observing the state of the IUT, which is critical for a test to detect errors

- Formal conformance testing techniques based on FSM
 - Generate a set of input sequences that will force the FSM implementation to undergo all specified transitions
 - Black box approach: only the outputs generated by the IUT (upon receipt of inputs) are observable to the external tester
Fault Models

A fault model is a hypothetical model of what types of faults may occur in an implementation.
- Most fault models are "structural"; i.e., the model is a refinement of the specification formalism (or of an implementation model).
 - E.g. mutations of the specification or of a correct implementation.
- It may be used to construct the fault domain used for defining what "complete test coverage" means.
 - E.g. single fault hypothesis (or multiple faults).

A fault model is useful for the following problems:
- Test suite development for given coverage objective.
- Formalization of "test purpose".
- For existing test suite: coverage evaluation and optimization.
- Diagnostics.

Fault Model for FSM

- Output fault: the machine provides an output different from the one specified by the output function.
- Transfer fault: the machine enters a different state than that specified by the transfer function.
- Transfer faults with additional states: number of states of the system is increased by the presence of faults, additional states is used to model certain types of errors.
- Additional or missing transitions: one basic assumption is that the FSM is deterministic and completely defined (fully specified). So the faults occur when it turns out to be non-deterministic and/or incompletely (partially) specified.

Fault Models for FIFO Queue and Petri Nets

FSM with several FIFO input queues
- Ordering fault: FIFO ordering is not preserved, or in case of multiple input queues, some input event enters a wrong input queue.
- Maximum length fault: the maximum length implemented is less than the one specified, or if an input event gets lost while queue is not overflow.
- Flow control fault: errors of ordering or of loss occur, in case the number of submitted input events overflows the maximum queue length specified.

Petri Nets
- Input or output arc fault: one of the input or output arcs is connected to the wrong place, missing, or exists in addition to those specified.
- Missing or additional transition: the number of transitions is not the same as in the specification.

FSM Related Definitions (1/2)

Directed graph \(G=(V, E)\) representing FSM \(M\)
- Set of vertices \(V = \{v_1, v_2, ..., v_n\}\) represents the set of states \(S\) in \(M\).
- Directed edge \((v_i, v_j) \in E\) represent a transition from state \(s_i\) to state \(s_j\) in \(M\).
- An edge in \(G\) is represented by a triple \((v_i, v_j, L)\), \(L=a_0/o_0\) is the input/output operation corresponding to the transition from \(s_i\) to \(s_j\) in \(M\).

Some other definitions & assumptions
- Deterministic FSM: predictable behavior in a given state for a given input.
- Strongly connected: for each state pair \((s_i, s_j)\) there is a transition path going from \(s_i\) to \(s_j\), i.e. each state can be reached from any other state.
- Fully specified: form each state it has a transition for each input symbol. Otherwise partially specified.
- Minimal: the number of states of M is less than or equal to the number of states of any equivalent machine.
FSM Related Definitions (2/2)

- **Start state** \(s_0 \in S \), usually the state when power-up
 - Often, there is a special input taking \(M \) to state \(s_0 \) from any other state with a single transition. In this case, \(M \) is said to have the **reset capability** and the input which performs the reset is denoted by “\(r \)”
- **Sequences for testing**
 - A **test subsequence** of \(M \) is a sequence of input symbols for testing either a state or a transition of \(M \)
 - A **\(\beta \)-sequence** for \(M \) is a concatenation of test subsequences for testing all transitions of \(M \)
 - A **test sequence** for \(M \) is a sequence of input symbols which can be used in testing conformance of implementations of \(M \) against the specification of \(M \)
 - An **optimize test sequence** is a test sequence such that no subsequence of it is completely contained in any other subsequence
- **So, the problem is how to obtain a “optimize test sequence” for \(M \)**

Outline

- **Introduction**
 - Concepts
 - Fault models
 - Related definitions
 - General approach
- **Methodologies based on FSM**
 - **T-Method** (Transition Tour method)
 - **D-Method** (Distinguishing sequences)
 - **W-Method** (Characterizing sequences)
 - **U-Method** (Unique input/output sequences)

Transition Level Approach

- **The methods for protocol conformance test sequence generation**
 - Produce a test sequence which checks the correctness of each transition of the FSM implementation
 - By no means exhaustive, i.e. no guarantee to exhibit correct behavior given every possible input sequence. The intent is to design a test sequence which guarantees “beyond a reasonable doubt”
- **Three basic steps for checking a transition** \((s_i, s_j; L), L = a_i/o_r \)
 - **Step 1**: The FSM implementation is put into state \(s_i \) (e.g. reset+transfer)
 - Difficulty in realizing this is due to the limited controllability of the implementation
 - **Step 2**: Input \(a_i \) is applied and the output is checked to verify that it is \(o_r \) as expected;
 - **Step 3**: The new state of the FSM implementation is checked to verify that it is \(s_j \) as expected
 - Difficulty in verifying this is due to the limited observability of the implementation

T-Method: Transition Tour Method

- **For a given FSM \(S \), a transition tour \(L \) is a sequence which takes the FSM \(S \) from the initial state \(s_0 \), traverses every transition at least once, and returns to the initial state \(s_0 \).**
 - Straightforward and simple scheme
 - New state of the FSM is not checked
- **Fault detection power**
 - Detects all output errors
 - There is no guarantee that all transfer errors can be detected
- **The problem of generating a minimum-cost test sequence using the transition tour method is equivalent to the so-called “Chinese Postman” problem in graph theory**
 - First studied by Chinese mathematician Kuan Mei-Ko (管梅谷) in 1962
The implementation \(I_1 \) contains an output error. Our transition tour will detect it.

The implementation \(I_2 \) contains a transition error. Our transition tour will not detect it.

A minimum-cost transition tour of the FSM is (including reset edges), starting from state 1:

\[
1 \rightarrow r, a, r, c, a, b, b, r, c, a, b, b
\]

A sequence of inputs is a distinguishing sequence (DS) for an FSM \(S \), if the output sequence produced by the FSM \(S \) in response to the input sequence is distinct for each initial state. A DS is used as a state identification sequence. A DS is a useful tool for checking Step 3 in detecting output and transfer errors. Detects all output errors. Detects all transfer errors. In practice, very few FSMs actually possess a DS. Even if an FSM does have a DS, the upper bound on the length of the DS will be too large to be useful in general. The requirement is too strong (leading to W- & U- methods…).
The specification S.
A distinguishing sequence is: b,b
If we apply it from:
- state 1, we obtain y,y
- state 2, we obtain y,x
- state 3, we obtain x,y

A test case which allow the detection of the transfer error is: a,b,b
If we apply it from the initial state of:
- the specification, we obtain x,x,y,y
- the implementation, we obtain x,x,x,x

The test cases (β-sequences) are:

1. r,a,c,a
2. r,c,a,b,a,a,c,a
3. r,c,a,b,a,a,c,a
4. r,c,a,b,a,b,c,a
5. r,c,a,b,a,c,a

An optimized test sequence constructed from above is: $rAAAAABBrAAAABBBrABBBBrABBBBrABBB$
W-Method: Characterizing Sequences

- For FSMs that do not possess a DS, W-Method defines partial DS each of which distinguishes a state \(s_i \) from a subset of the remaining states instead of from every state of the FSM.
 - The states of the FSM are first partitioned into blocks which can be distinguished by observing the sequence of outputs produced by a sequence of inputs.
 - Each block is subsequently partitioned into distinguishable sub-blocks, and so on, until each block consists of exactly one state.
- To identify a state (for step 3):
 - Applying an input sequence
 - Returning to the state via a transfer sequence
 - Applying a second input sequence, and so on.
- The complete set of such input sequences for an FSM is called the characterizing set.
 - Attach each CS in the set to the end of each transfer sequence.

W-Method Example – 1

For the input sequence \(\text{Acs}1 = \text{A,A} \), the response is identical for states 2 and 3 (10), but is distinct from that for states 0(00), 1(11), 4(10).

Another input sequence \(\text{Acs}2 = \text{B} \) is distinct for states 2(0) and 3(1).
Therefore, \(\text{Acs}1 \) is required to identify states 0, 1, 4, and two input sequences \(\text{Acs}1 \) and \(\text{Acs}2 \), along with appropriate transfer sequences, are required to identify states 2 and 3. I.e. \(W = \{\text{AA, B}\} \).

W-Method Example – 2

No DS!
For the input sequence \(\text{Acs}1 = 0,1,0 \), the response is identical for states C and D (101), but is distinct from that for states A(000) and B(001).

Another input sequence \(\text{Acs}2 = 1,0 \) is distinct for states C(00) and D(01).
Therefore, \(\text{Acs}1 \) is required to identify states A and B, and two input sequences \(\text{Acs}1 \) and \(\text{Acs}2 \), along with appropriate transfer sequences, are required to identify states C and D. I.e. \(W = \{010, 10\} \).

W-Method Example – 3

A characterizing set \(W = \{a, b\} \)
- for state 1: a/e, b/f
- for state 2: a/f, b/f
- for state 3: a/f, b/e

The \(\beta \)-sequences generated are:
- \(a \) \(a \)
- \(b \) \(b \)
- \(r, a, a \) \(r, a, b \)
- \(r, b, a \) \(r, b, b \)
- \(r, c, a \) \(r, c, b \)
- \(r, b, a, a \) \(r, b, a, b \)
- \(r, b, b, a \) \(r, b, b, b \)
- \(r, c, a, a \) \(r, c, a, b \)
- \(r, c, b, a \) \(r, c, b, b \)
- \(r, c, c, a \) \(r, c, c, b \)
U-Method: Unique Input/Putout Sequences

- In DS and CS, requirement of state identification is too strong
 - Answer the question of "what is the current state of the implementation?"
 - For testing it is sufficient to know an error has been detected
- UIO sequence of a state of a FSM
 - An I/O behavior that is not exhibited by any other state of the FSM
 - Answer the question of "is the implementation currently in state x?"

Advantages against DS & CS

- Cost is never more than DS and in practice is usually much less (shorter)
- Nearly all FSMs have UIO sequences for each state
- DS – same for all states; UIO sequence – normally different for each state

To check state s by using UIO sequence of s

- Apply input part of UIO, compare output sequence with the expected one
- If the same, then the FSM is in the state s; otherwise, not in the state s
- If not in state s, no information about the identity of the actual state s'
Analysis

- Fault Testing Coverage
 - Fault coverage for D-, W-, and U-methods is better than T-method
 - Fault coverage for D-, W-, and U-methods are the same

- Summary
 - All of these four methods assume minimal, strongly connected and fully specified Mealy FSM model of protocol entities
 - On average, T-method produces the shortest test sequence, W-method the longest. D- and U- methods generate test sequence of comparable lengths
 - T-method test sequences are able to detect output faults but not transition
 - D-, W-, and U-methods are capable of detecting all kinds of faults and give the same performance.
 - U-method attracts more and more attentions and there are several approaches based on the basic idea with some improvements

References